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Abstract

An approach is presented for carrying out

reliability-based design of a metallic, plate-like wing to

meet strength and flutter requirements that are given in

terms of risk/reliability. The design problem is to

determine the thickness distribution such that wing

weight is a minimum and the probability of failure is

less than a specified value. Failure is assumed to occur

if either the flutter speed is less than a specified allow-

able or the stress caused by a pressure loading is greater

than a specified allowable. Four uncertain quantities

are considered: wing thickness, calculated flutter speed,

allowable stress, and magnitude of a uniform pressure

load.

The reliability-based design optimization approach

described herein starts with a design obtained using

conventional deterministic design optimization with

margins on the allowables. Reliability is calculated

using Monte Carlo simulation with response surfaces
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that provide values of stresses and flutter speed. During

the reliability-based design optimization, the response

surfaces and move limits are coordinated to ensure

accuracy of the response surfaces.

Studies carried out in the paper show the relation-

ship between reliability and weight and indicate that,

for the design problem considered, increases in reliabil-

ity can be obtained with modest increases in weight.

Introduction

Advanced aerospace vehicles of the future will be

built to meet design requirements that are defined in

terms of the likelihood, or probability, that the vehicle

will perform as intended. In this paper, that likelihood

is referred to as the reliability, and the associated design

approach is referred to as reliability-based design.

Reliability-based design has several advantages

over traditional deterministic design. For example,

with these methods, measures of reliability and safety

are available during the design process and for the final

design. This information allows the designer to pro-

duce a consistent level of safety and efficiency

throughout the vehicle--no unnecessary over-designs

in some areas. As a result, designers may be able to

save weight while maintaining adequate reliability and

safety. In addition, in reliability-based design it is pos-

sible to determine the sensitivity of the reliability to

design changes that can be linked to changes in cost.

Designers could carry out trade studies involving
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reliability, weight, and cost. Also, for the same cost, it

may be possible for aerospace vehicles to be made

more reliable and safer than with traditional design

approaches, or, for the same safety and reliability, the

vehicle may be made at a lower cost. The primary dis-

advantages of reliability-based design are that a sub-

stantial amount of both data and computations are
needed.

To address these disadvantages, this paper provides

an example of data collection and illustrates computa-

tional techniques that help make reliability-based

design tractable. In addition, this paper provides insight

into reliability-based design for an example design

problem involving two disciplines--aeroelasticity and

stress analysis.

This paper presents a design procedure by which a

plate-like wing with variable thickness can be designed

to be minimum weight and to meet both a subsonic

flutter requirement and a separate strength requirement.

However, unlike earlier, deterministic work (e.g.,

Refs. 1-4), this design procedure considers several

uncertainties and accounts for them by using a prob-

abilistie approach. Also, instead of an inequality con-

stmint on failure (flutter speed too low and/or stress too

high), the inequality constraint is on the probability of

failure. The design variables define the wing thickness
distribution.

First, the paper provides a description of the design

problem. Then the details of the approaches used and

the results of the studies are presented. The studies

show the relationship between reliability and weight

and indicate that, for the design problem considered,

increases in reliability can be obtained with modest

increases in weight.

Description of Wing_ Design Problem

The objective of the study is to obtain the

minimum-weight plate-like wing that satisfies design

requirements on both flutter and strength. This exam-

ple was chosen because a similar metal plate can serve

as the center portion, and primary stiffness, of a wind

tunnel model. The appropriate airfoil shape can be cre-

ated by bonding balsa wood or a foam material to the

metal plate and tooling the combination. The thickness

distribution of the metal plate can be tailored so that the

complete model has the desired stiffness distribution.

The wing planform is shown in Figure 1. The wing

semispan is 60 in., the wing root is 24 in., the tip is

12 in., and the sweep of the leading edge is 14 degrees.

The wing thickness distribution is taken to be quadratic

in both the chordwise and spanwise directions. The

quadratic thickness distribution is defined by the thick-

nesses at the nine locations shown in Figure 2. Loca-

tions 4, 5, and 6 are at mid semispan. Locations 2, 5,

and 8 are at the mid points of the local chord. These

nine thicknesses are the design variables. The expres-

sion for the thickness distribution is presented and

explained in Appendix A. The minimum gage require-

ment for the thickness is 0.150 in.

Figure 1. Planform dimensions of metal plate-like

wing.

@

Figure 2. Location of nine thicknesses that define the

thickness distribution of the plate-like wing.

There is one flutter speed requirement and one

strength requirement. The flutter speed requirement is

subsonic. The strength requirement is applied to each

finite element. The loading for the strength analysis is

uniform pressure over the surface of the wing. The

wing planform is fixed; design variables control the
thickness distribution. There are four uncertainties:

wing thickness, calculated flutter speed, allowable

stress, and magnitude of the uniform pressure load.

Instead of an inequality constraint on failure (flutter

speed too low and/or stress too high), the inequality

constraint is on the probability of failure.

The computer code MSC/NASTRAN was used to

calculate both the stresses (Ref. 5) and the flutter speed

(Ref. 6). The finite element grid was obtained by
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dividing the wing into 18 equally-spaced segments

spanwise and 9 segments chordwise -- making a total of

162 finite elements. The finite element grid is shown in

Figure 3. The finite element that was used in the stress

analysis is denoted CQUAD8.

For the flutter analysis, the KE method, which is a

modified K method, was used. Eight flutter modes

were calculated. The frequency and damping for each

mode were calculated at 99 reduced frequencies. The

flutter speed for each of these modes was obtained from

the reduced frequency at which the damping becomes

negative. The Doublet-Lattice method was used to

calculate the required aerodynamic matrices. The aero-

dynamic grid was obtained by dividing the wing into

10 equally-spaced segments spanwise and 5 segments

chordwise. The aerodynamic grid is shown in Figure 4.

Values of non-random quantities that were used in

the wing design study are given in Table 1. These

quantities were used in the stress analysis and in the

flutter analysis. Definitions of the four types of random

quantities that were used in carrying out the pmbabilis-

tic wing design study are given in Figure 5. The nine

random thicknesses ti(random ) were obtained by taking

the input values of ti and adding a random increment

from the uniform distribution shown in Figure 5. Note

that the mean value of the increment is not zero.

Further discussion of randomness in ti is given in

Appendix B.

The fourth type of random quantity defined in Fig-

ure 5 is the calculated flutter speed, which depends on

the thickness distribution (defined by ti(random)), on

the aerodynamic grid, and on the flutter analysis

method (e.g., KE and PK). To account for the uncer-

tainties associated with the aerodynamic grid and

analysis method, an increment from a uniform distribu-

tion was added to the flutter speed calculated using

ti(random ). The increment was based on the assump-

tion that the flutter speed calculated with other aerody-

namic grids and by other methods is within _+3% of the

flutter speed calculated with the grid and method used

here.

Table 1. Values of the non-random quantities that define the wing design problem

Quantities associated with wing metallic material

Modulus of elasticity

Density
Poisson's ratio

Quantities associated with flutter analysis

Reference air density
Mach Number

Reference Chord

Structural damping (g)

(over the range of frequencies from 0-1000 Hz)

10 x 106 psi

0.10 lb/in 3

0.30

0.0023 slng/ft 3
0.45

24 in.

0.01

/

/

/

/

/

/

/

10 _ 2_37 '2 _ 19

4 _ _

5 _ "'"_ "-------_

8 _ ------'------- _---4-____________

9 18 27 _, _,,--77-r----- ------.-___

Figure 3. Finite element grid with pattem of element numbers.
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Figure4. Aerodynamic grid.

Uniform Pressm'e Load

Normal distriMttion

Mean 1.0 psi
Stalldard deviatio11 = 0.05 psi

AllowabIe Stress
Normal distribution

Mean 50,000 psi
Standard deviation 2,500 psi

T__._c_h__._e__.e_s_

ti(random) = _i(given) + random increment fl'om
unflbrm distribution below

......0.0025 +0.0055

Calculated Flutter Speed

Use ti(ratldom) to calculate flutter speed Vf.
Vt(random ) = Vf + random hlcrement fi'om
urfifbrm distribution below

_0.03 Vt. +0.03 Vf

Figure 5. Definitions of the four random quantities

used in the pmbabilistic design problem.

With the above information, the wing design

problem can be stated as follows. Find the values of the

thicknesses t i (i=l, . . . , 9) such that wing weight is a

minimum and the probability of system failure (Pf) is

less than a specified value (e.g., 0.01). The objective

function is the wing weight calculated using t i rather

than the mean value of the wing weight calculated

using ti(random). System failure is assumed to occur if

any constraint is violated. The constraints are (1) the

flutter speed must be greater than a specified allowable

and (2) the von Mises stress at the centroid of any

element must be less than the specified allowable. The

design problem is an example of a series system in

which there are many failure modes, any of which can

cause the system to fail.

Design Approach

The design approaeh was a eombination of

an analyzer (MSC/NASTRAN), an optimizer (DOT,

Ref. 7), and FORTRAN and C eode for approximate

analysis and probabilistie analysis. First, the method

for seleeting the starting point for the reliability-based

optimization is diseussed. Next, the analyses used to

perform the reliability-based design are deseribed.

Then, possible sources of error and methods for error

alleviation in this approach are diseussed.

The first step was to carry out a deterministic opti-

mization with margins on the allowables. The allow-

ables for both the deterministic and probabilistic

optimization are shown in Table 2. Standard methods

were used to carry out the deterministic optimization.

Table 2. Allowables for both deterministic

and pmbabilistic optimization

Allowable

Type of optimum

Deterministic Probabilistic

50,000 psi

Stress 44,000 psi (Mean)

Flutter Speed 550 ft/sec 540 ft/sec

The deterministic optimum served as a starting

point for the pmbabilistic optimization. Monte-Carlo

simulation (MCS) was used to calculate the reliability.

Approximate analysis techniques in the form of

response surfaces were used to provide estimates of the

flutter speed and the stresses. The stresses were the

yon Mises stresses evaluated at the centroid of each of

162 finite elements. A response surface was generated

for this stress in each element. Therefore, with the

response surface for the flutter speed, a total of 163

response surfaces were used during the calculation of

the reliability. (The type of response surface used is

discussed in Appendix C.) In calculating the reliability,

MCS received all input from the response surfaces
rather than from MSC/NASTRAN.

Two sources of error, MCS and the response

surface calculations, affected the calculation of the
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Figure 6. Move limit strategy during pmbabilistic

optimization.

reliability. In the following two paragraphs, these two

sources of error are discussed along with the approach
taken to minimize their effect.

In MCS, the reliability is computed from an integer

count of the number of simulations that meet the reli-

ability requirements. A large number of simulations are

more likely to accurately reflect the distribution of the

underlying random variables. As a result, a large num-

ber of simulations are more likely to provide an accu-

rate prediction of the reliability. In addition, the

optimizer requires derivatives of the reliability with

respect to the design variables. These derivatives are

computed by central differences using small changes in

the design variables. Small changes in the design vari-

ables may not change the count in an integer-based reli-

ability calculation unless a large number of simulations

are performed. In this paper, to maintain the required

accuracy, one million MCS trials were used for each

estimate of the reliabilityJ

In generating a response surface, points are

selected to provide an accurate estimate of the response

in the region of interest. Initially, several sets of

response surfaces with different sampling region sizes

were generated to study the accuracy of the response

surfaces. Errors in the response surfaces were too large

to use the entire design space for a sampling region.

Because the error in the response surfaces must be

§It is possible to estimate the error associated with a Monte Carlo

simulation. For example, if a Monte Carlo simulation with one mil-
lion trials indicates a reliability of 0.9900, there is a 95% probability
that the true answer is between 0.9898 and 0.9902 (refs. 8,9).

much less than the variation in the responses due to

uncertainty, it was necessary to use response surface

sampling zones no larger than 0.01 inches for this

problem.

For this design pmblent multiple response surfaces

are used. When the optimizer selects a new design, the

move limits are adjusted to match the region over

which the response surfaces are accurate. The move

limit strategy is illustrated in Figure 6, which shows a

hypothetical optimization search in 2-D design space.

Once the move limits are reached, new response sur-

faces are generated, a new move direction is calculated,
and new move limits are set.

As mentioned previously, minimum gage thickness

was chosen to be 0.150 in. Before calling MSC/

NASTRAN to generate the response surfaces, the wing

thickness was calculated at the corners of each finite

element. If the thickness was found to be less than

minimum gage, it was set equal to 0.150 in.

Results and Discussion

First, the deterministic optimization is discussed.

Then, the probabilistic optimization is discussed.

Results from the deterministic optimization served

as a starting point for the probabilistic optimization.

Deterministic optimization

In this study, two different deterministic optimum

designs were found with approximately the same

weight. For each of these two designs, the weight,

flutter speed, largest yon Mises stress (and element

number), and the design variables are presented in

Table 3.

Contour plots showing the thickness distributions

for the two designs are presented in Figure 7. Substan-

tial parts of both wings are at minimum gage (0.150 in).

Both designs are thick along the leading edge near mid-

semispan. In addition, design 1 is thick at the root near

mid-chord, while design 2 is thick at the root near the

trailing edge. Plots showing the yon Mises stress at the

centroid of each element are presented in Figure 8. The

stress distributions are similar, in many respects, to the

thickness distributions. In design optimization such as

this, the procedure adjusts thicknesses to simultane-

ously improve both the local strength and the load

paths. The load paths for designs 1 and 2 are different.

To explore why there appear to be two converged

deterministic optimum designs, a technique was used
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Table 3. Quantities associated with deterministic optima

Quantity Optimum 1 Optimum 2

Weight (lb) 30.820 30.818

Flutter speed (ft/sec) 550.06 549.61

Lapgest von Mises stress (psi) 43,999. 44,012.
at centroid of element numben 5 46

Design variables (in)

h 0.15000 0.15000

t2 0.54880 0.43030

t 3 0.15000 0.51194

t4 0.60145 0.56690

t5 0.19433 0.21366

t 6 0.15000 0.15000

t 7 0.15000 0.15000

t8 0.15000 0.15000

t 9 0.15000 0.15000

_:_. Design 1

Design2

_5
Thickness, in.

Figure 7. Thickness distribution for optimum determi-

nistic designs 1 and 2.

that is similar to a technique used in Reference 10. A

plane containing three designs--the two deterministic

optimum designs plus a third design - is passed through

design space. For the approach used herein, the third

design has design variables that are two percent larger

"__\ Design 1

Design 2:_i _i "

_Yf..

<:_ I/2 Cq _ r" _ C'I _* b tg3 Cq

Stress, ksi

Figure 8. Von Mises stress at centroid of each finite

element for optimum deterministic designs 1 and 2.

than the average of the corresponding design variables

of the two deterministic optimum designs. On this

plane, weight contours and constraint boundaries can be

superimposed. Such a plot provides insight into various

interactions in design space.
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................Stress 7  egion
Stress 46

Flutter

® Design 3

Flutter

Optimum Optimum
design I design 2

Optimum design 1 Optiraum design 2

®

tr) _- re! ¢',1 '-2 _-_ _. _ _"

Weight, lb

(a) Constraints are shown as a system constraint

boundary that incorporates all constraints.

(b) Several individual constraints are shown. Weight

contours are not shown.

Figure 9. Plane through design space with optimum deterministic designs 1 and 2, weight contours, and

constraints.

Such a chart is presented in Figure 9. In Figure 9a

the weight is indicated by the color. Optimum determi-

nistic design 1 is at the lower left, optimum determinis-

tic design 2 is at the lower right, and the third design is

at the top of the trapezoid. The curve denoted "System

constraint boundary" is the envelope of the flutter con-
stmint and the stress constraint in all elements. The

combination of the weight contours, the constraint

boundaries, and the fact that a straight line drawn

between the two designs passes through infeasible

design space indicate that the two designs are distinct,

converged optima.

Figure 9b shows the individual constraints that

form the envelope constraint boundary that is shown

in Figure 9a. For simplicity, weight contours are not

shown in Figure 9b. Optimum design 1 is bounded by

rising weight, by the flutter constraint, and by the stress

constraints from elements 5 and 46. Optimum design 2

is bounded by rising weight, by the flutter constraint,

and by stress constraints from elements 6, 27, and 46.

Probabilistic optimization

The reliabilities of the two optimum deterministic

designs were calculated using the probabilistic allow-

ables given in Table 2. For designs 1 and 2, the reli-

abilities are 0.8967 and 0.8990, respectively.

Probabilistic designs were obtained using, as start-

ing points, both deterministic optima. The two starting

points produced two different probabilistic designs; the

probabilistic designs are similar to the original determi-

nistic designs. The probabilistic designs are given the

same designation as the deterministic design starting

points--that is, optimum probabilistic design 1 was

obtained using, as a starting point, optimum determi-

nistic design 1. Optimum probabilistic design 1
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Table4. Quantitiesassociatedwithoptimum
probabilisticdesign1. System reliability

requirement is 0.9990

Quantity Value

Nominal Weight, lb 31.7659

Mean Weight, lb 31.8982

Pf (stress) 0.001002

Pf (flutter) 0.000006

Pf(system) 0.001008

Design variables

t 1 0.155908

t 2 0.151994

t3 0.151399

t4 0.150000

t5 0.579366

t 6 0.150245

t 7 0.150000

t8 0.594500

t 9 0.207701

was obtained for one reliability--0.9990. Optimum

probabilistic design 2 was obtained for four

reliabilities--0.9000, 0.9900, 0.9990, and 0.9999. For

each design, the weight, the probability of various

modes of failure, and the values of the design variables

are given in Tables 4 and 5 for designs 1 and 2, respec-

tively. Note that, in the tables, the quantity Pf (stress) is

the probability of failure by exceeding the allowable

stress in any element. (Optimum probabilistic designs
could have been obtained for several values of the reli-

ability for either probabilistic design 1 or probabilistic

design 2. Design 2 was selected to demonstrate the

technology in this paper.)

In Tables 4 and 5 and elsewhere in this paper, the

quantity "Nominal Weight" is the weight calculated

using the deterministic thickness design variables ti

rather than the random thicknesses ti(random). The

quantity "Mean Weighf' is the mean value of the

weight calculated using the random thicknesses

ti(random ). Random thicknesses are always used in

calculating the reliability.

The nominal and mean weights of design 2

(Table 5) are presented as a function of probability of

system failure (Pf) and reliability in Figure 10. Five

thousand Monte Carlo simulations were used to deter-

mine the mean weight. Note that the horizontal scale is

logarithmic with respect to Pf. Below the values of Pf

are the corresponding values of the reliability. Plotted

in this manner, the nominal and mean weights are al-

most linear with respect to both Pf and to the reliability.

The curves show the difference between the two

weights--abont 0.12 lb or about 0.38 percent. The

curves also show that large increases in reliability can

be obtained with relatively small increases in weight.

Table 5. Quantities associated with optimum probabilistic design 2

for four system reliability requirements

Quantity
System Reliability Requirement

0.9000 0.9900 0.9990 0.9999

Nominal Weight, lb 30.7185 31.2389 31.7918 32.3702

Mean Weight, lb 30.8500 31.3715 31.9277 32.5073

Pf (stress) 0.051390 0.009774 0.000012 0.000100

Pf (flutte_ 0.051910 0.000230 0.000986 0.000000

Pf(system) 0.100001 0.010003 0.000998 0.000100

Design variables

tl 0.150000 0.150054 0.150592 0.153004

t2 0.429735 0.440164 0.457556 0.467194

t3 0.515641 0.525466 0.536452 0.547373

t4 0.572689 0.568498 0.555382 0.563198

t 5 0.207682 0.217424 0.226726 0.232476

t 6 0.150139 0.150123 0.154583 0.157350

t 7 0.167267 0.157169 0.150243 0.150000

t 8 0.150091 0.150000 0.150487 0.150072

t 9 0.152205 0.150905 0.151110 0.150675

8

American Institute of Aeronautics and Astronautics



33,0

32.5,

32,0

31.0

MeanWeight

" T "g

30.5
<

0 ........ I ........ I ........ I

Pf 0.0001 0.0010 0.0100 0.1000
R (0.9999) (0.9990) (0.9900) (0.9000)

System design requiremenls

Figure 10. Nominal and mean weights of optimum

pmbabilistic design 2 as a function of system require-

ment on probability of failure (Pf) and reliability (R).

R=I-Pf.

900

800

700

>. 600
,'o

8 5oo
g 400

300

2O0

100

0
31.40 31.60 31.80 32.00

Weight, lb

1

32.20 32.40

Figure 11. Distribution of weights produced by

ti(random ) for design 2, reliability = 0.9990.

In Tables 4 and 5, six significant digits are pre-

sented because that precision is needed to obtain a

minimum weight design for a reliability of 0.9999. To

be consistent, six significant digits are presented for all

values of design reliability.

The range of weights produced by ti(random) is

indicated in Figure 11. These data are for design 2,

system reliability -- 0.9990. Five thousand Monte Carlo

simulations were used to determine the distribution.

The nominal weight and the mean weight are also

shown. The range of possible weights is greater than

the difference between the nominal and mean weights.

::::::::
Design

N

i ......

........... c% t'-,I e,l _

d
Thickness, in.

Figure 12. Thickness distribution for optimum

pmbabilistic designs 1 and 2. System reliability

requirement is 0.9990.

Contour plots that show the thickness distributions

of pmbabilistic designs 1 and 2 for a reliability of

0.9990 are presented in Figure 12. These thickness

distributions were calculated using the deterministic

design variables ti rather than the random thicknesses

ti(random). If the same terminology that was used

above to describe the weight is used here, the thickness

distributions shown in Figure 12 could be referred to as

Nominal Thicknesses rather than Mean Thicknesses.

These thickness distributions are similar to those in

Figure 7 for the deterministic designs.

Figure 13 provides detailed information about the

stresses in probabilistic designs 1 and 2 that were

designed for a reliability of 0.9990. This figure indi-

cates the probability that the yon Mises stress exceeds

the allowable stress at the centroid of each finite

element. Whereas Tables 4 and 5 give the probability

of exceeding the allowable stress in any element,

Figure 13 gives the probability of failure for each ele-

ment. The results show that there are only a few ele-

ments where the stress has a relatively high likelihood

of exceeding the allowable stress. These elements are

the same as those tkat provide the active constraints for

the deterministic designs.
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Probabilityoffailurebyexceedingallowablestress

Figure13. Probability that von Mises stress exceeds
the allowable stress at the centroid of each finite ele-

ment. Designs are optimum probabilistic designs 1 and

2 for system reliability requirement of 0.9990.

Design 3

Optimum design 1 Optimum design 2

c-i c-i c-i c.i _ c.i c.i _ _ _ _ _

Weight, lb

Figure 14. Plane through design space with optimum

probabilistic designs 1 and 2, weight contours, and

curves of constant system reliability.

Finally, a chart similar to Figure 9 is shown in Fig-

ure 14 to help explain the differences between prob-

abilistic designs 1 and 2 for a reliability of 0.9990. The

third design in Figure 14 was obtained the same way it

was obtained for Figure 9. The difference between

Figure 9 and Figure 14 is that in Figure 14 the con-

straint curves are system reliability. Although the

design space in Figure 14 is not exactly the same as in

Figure 9, it is close enough to see how various failure

modes affect the reliability. For example, the sharp

changes in the reliability in the right portion of Fig-

ure 14 are caused by the multiple stress failure modes

shown near design 2 in Figure 9b.

Concluding Remarks

An approach for carrying out reliability-based

design of a metal, plate-like wing that can serve as the

center portion and primary stiffness of a wind tunnel

model is presented. The plate is designed to meet

strength and flutter requirements defined in terms of

risk/reliability. Although this study does not address all

the issues associated with designing this type of wind

tunnel model, this study can serve as the first step in

developing a capability to account for uncertainties in

the design of such a wind tunnel model. The design

approach can also be used for preliminary design of

wing structures for aircraft with thin wings.

The design problem that was studied can be

defined as follows. Determine the thickness distribu-

tion such that wing weight is a minimum and the prob-

ability of failure is less than a specified value. Failure

is assumed to occur if either the flutter speed is less

than a specified allowable or the stress caused by a

pressure loading is greater than a specified allowable.

There are four uncertainties: wing thickness, calculated

flutter speed, allowable stress, and magnitude of a uni-

form pressure load. Data for uncertainties in the thick-

ness distribution of the metal wing were obtained from

a NASA machine shop that has made such models.

The key steps of the design approach are as fol-

lows. The reliability-based design optimization started

with a design obtained using conventional deterministic

design optimization with margins on the allowables.

The reliability was calculated using Monte Carlo simu-

lation (MCS) with one million trials. MCS interacted

with response surfaces that provided values of stresses

and flutter speed. During the reliability-based design

optimization, the response surfaces and move limits

were coordinated to ensure accuracy of the response

surfaces.
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Thestudiesproducedtwo reliability-based designs

that met the design requirements and had nearly the

same weight. A novel graphical approach is used to

show how the two designs are distinct, converged

optima.

The studies showed the relationship between reli-

ability and weight and showed that, for the design

problem considered, large increases in reliability could

be obtained with relatively small increases in weight.

Appendix A. Mathematical Expression that Represents

Wing Thickness Distribution

The thickness varies over the wing as a biquadmtie

polynomial in x and y as follows

where

c 1 = t 5

1

c 2 = _(t8-t2)

1

c 3 =_(t2 + t8)- t 5

1

c4 = _(t6 - t4)

c5=l(t l+t 9-t3-t7)

(A3)

(A4)

(A5)

(A6)

(A7)

t = a 1 + a2x + a3xy + a4y + a5 x2 + a6x2y

+ a7xy 2 +a8y 2 + a9x2y 2 (A1)

The unknown coefficients a i (i = 1,9) in Equa-

tion (A1) can be determined from thickness values at

nine locations in the wing. For the present study, the

nine locations are shown in Figure 2 and in Fig-

ure Al(a). Using Lagrange finite element shape func-

tions and the thickness at these nine locations on the

wing, the thickness distribution t(_,_/) can he described

in a curvilinear coordinate system (Fig. Al(b)) as

t(_,_]) = (c1 + c2_] + c3_]2)+ (c4 + c5_] + c6_]2)_

+(C7 + C8_] + C9_]2)_ 2 (A2)

=1 t
c6 5( 4-t6)+4(t3+t9-tl-t7)

1 t
c7=_( 4 +t6)-t5

1 +1(t7 +t9c8= (t2-ts) -t1- 3)

1

c 9 = t5 -_(t2 +t4 +t 6 +t8)

+4(tl +t3+t7+t9)

(A8)

(A9)

(AIO)

(All)

1, 1 11

(a) Wing planform in Cartesian (x, y)

coordinate system.

(b) Location of nodes in curvilinear

(_, r/) system.

Figure A1. Wing planform and Lagrange isoparametric transformation.
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Theequationrelating(x,y)and(_,_/)can be written

as

2v
_/= -_ - 1 (A12)

L

_- 2L(x- ytanO) -1

crL-(cr-ct)y
(A13)

The quantities L, 0, Cr, and ct in Equations (A12) and

(A13) are shown in Figure Al(a).

When response surfaces were created for stress and

flutter, the wing was modeled using 162, eight-node

quadrilateral finite elements. The finite element analy-

sis code MSC/NASTRAN requires the thickness at

each of the four comer nodes of each quadrilateral

finite element as input. The thicknesses of the comer

nodes were obtained using Equation (A4) for a given

set of thickness (q to tg). However, if a calculated
thickness is less than the minimum thickness 0.15 in.,

the thickness at that node is set equal to 0.15 in.

Appendix B. Origin of Randomness in

Thickness--Machine Shop Measurements

Data describing the uncertainties associated with

machining a wind tunnel model were obtained from

quality control measurements of a wind tunnel model

that had been machined and measured at NASA

Langley Research Center. These measurements were

taken at 14,805 points and were compared with the

plans provided by the customer, the test engineer. The

plans called fora tolerance of _+0.0025 in.
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Figure B1. Distribution of difference between

measured dimensions and a specified dimension

for a wind tunnel model. Difference is given by

measured dimension minus specified dimension.

Figure B1 presents a histogram of the differences

between a measured dimension and the specified

dimension. Positive numbers indicate an excess of

material. The results show that the number of points

with excess material, and the magnitude of the

excesses, exceeds the number and magnitude of the

undercuts. This distribution reflects the approach used

to produce the model. After the model was machined

and carefully measured, the model and measurements
were shown to the customer. The customer could

accept the job, or could request some rework. Since it

was much easier to rework the job by removing mate-

rial than by adding material, it was much more likely
that the machinist would leave excess material than

undercut the job. Therefore, the distribution shown in

Figure B1 is not symmetric about a difference of zero.

Regarding the undercut data at the left in Fig-

ure B1, since the customer specified a tolerance of

•+0.0025 in., only a small number of occurrences fell

outside that tolerance. The data in Figure B1 was

approximated by a uniform distribution between

-0.0025 and +0.0055, which is shown in Figure 5.

Appendix C. Response Surface Used in Calculations

In this paper, Monte Carlo simulation (MCS) is

used to calculate the reliability. Unfortunately, MCS

requires a large number of function evaluations to

obtain the required accuracy. Because the stress and

flutter analyses used in this paper are computationally

expensive, it would not be practical to perform exact

analyses for every simulation. Instead, an altemate

method was used to calculate the stresses and flutter

speed. That method was based on response surface

approximations.

In the response surface approach, approximate

polynomial functions are fit to the response over the

design space. MCS interacts with these relatively sim-

ple functions rather than with the more complex exact

analyses. In the present work, one quadratic polyno-

mial is used to represent the stress response in each

of the 162 finite elements, and one quadratic polyno-

mial is used to represent the flutter speed, for a total of

163 response surfaces. A quadratic polynomial with

9 design variables (v) requires k = (v + 1)(v + 2)/2 = 55

coefficients.

In this study, the 55 coefficients of the polynomial

were estimated by using a face-centered central com-

posite design approach (Ref. 11). In this approach,

design points are established at the center of the design
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space,at the comers of the design space (the intersec-

tion between each of the design variable limits), and at

the face-centers of the design space (points determined

by setting one variable to its upper or lower limit with

all other variables set to the average of their upper and

lower limits). The number of design points, p, required

by this procedure is p = 2v + 2v + 1 = 531 points. The

method of least squares is used to solve for the 55 coef-

ficients by minimizing the error between the 531 design

points and the response polynomial.
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